Funatic Maths

Written on
- Paper 2

Question 5

The graphs of f(x)=12cosxf(x)=-\frac{\displaystyle 1}{\displaystyle 2}\cos x and g(x)=sin(x+30)g(x)=\sin (x+30^{\circ}), for the interval x[0;180]x\in[0^{\circ}\,;\,180^{\circ}], are drawn below. A(130,9;0,33)A(130,9^{\circ}\,;\,0,33) is the approximate point of intersection of the two graphs.
Image
5.15.1 Write down the period of gg. (1)(1)
5.25.2 Write down the amplitude of ff. (1)(1)
5.35.3 Determine the value of f(180)g(180)f(180^{\circ})-g(180^{\circ}) (1)(1)
5.45.4 Use the graphs to determine the values of xx, in the interval x[0;180]x\in[0^{\circ}\,;\,180^{\circ}], for which:
5.4.1\quad 5.4.1 f(x10)=g(x10)f(x-10^{\circ})=g(x-10^{\circ}) (1)(1)
5.4.2\quad 5.4.2 3sinx+cosx1\sqrt{3}\sin x+\cos x \geq 1 (4)(4)
[8]\textbf{[8]}