Funatic Maths

Written on
- Paper 2

Question 6

6.16.1 In the diagram, P(5;12)P(-5\,;\,12) and TT lies on the positive xx-axis. PO^T=θP\hat OT=\theta
Image
Answer the following without using a calculator:
6.1.1\quad 6.1.1 Write down the value of tanθ\tan\theta (1)(1)
6.1.2\quad 6.1.2 Calculate the value of cosθ\cos\theta (3)(3)
6.1.3\quad 6.1.3 S(a;b)S(a\,;\,b) is a point in the third quadrant such that TO^S=θ+90T\hat OS=\theta+90^{\circ} and OS=6,5OS=6,5 units. Calculate the value of bb. (4)(4)
6.26.2 Determine, without using a calculator, the value of the following trigonometric expression:
sin2x.cos(x)+cos2x.sin(360x)sin(180+x)\frac{\displaystyle \sin{2x}.\cos(-x)+\cos{2x}.\sin(360^{\circ}-x)}{\displaystyle \sin(180^{\circ}+x)}

(5)(5)
6.36.3 Determine the general solution of the following equation:
6sin2x+7cosx3=06\sin^2 x+7\cos{x}-3=0

(6)(6)
6.46.4 Given: x+1x=3cosAx+\frac{\displaystyle 1}{\displaystyle x}=3\cos{A} and x2+1x2=2x^2+\frac{\displaystyle 1}{\displaystyle x^2}=2
Determine the value of cos2A\cos{2A} without using a calculator.

(5)(5)
[24]\textbf{[24]}