Funatic Maths

Written on
- Paper 1

Question 4

4.14.1 Given: h(x)=3x1+2h(x)=\frac{\displaystyle -3}{\displaystyle x-1}+2
4.1.1\quad 4.1.1 Write down the equations of the asymptotes of hh. (2)(2)
4.1.2\quad 4.1.2 Determine the equation of the axis of symmetry of hh that has a negative gradient. (2)(2)
4.1.3\quad 4.1.3 Sketch the graph of hh, showing the asymptotes and the intercepts with the axes. (4)(4)
4.24.2 The graphs of f(x)=12(x+5)28\: f(x)=\frac{\displaystyle 1}{\displaystyle 2}(x+5)^2-8 and g(x)=12x+92\: g(x)=\frac{\displaystyle 1}{\displaystyle 2}x+\frac{\displaystyle 9}{\displaystyle 2} are sketched below.
  • AA is the turning point of ff.
  • The axis of symmetry of ff intersects the xx-axis at EE and the line gg at D(m;n)D(m\,;\,n).
  • CC is the yy-intercept of ff and gg.
Image
4.2.1\quad 4.2.1 Write down the coordinates of AA. (2)(2)
4.2.2\quad 4.2.2 Write down the range of ff. (1)(1)
4.2.3\quad 4.2.3 Calculate the values of mm and nn. (3)(3)
4.2.4\quad 4.2.4 Calculate the area of OCDEOCDE. (3)(3)
4.2.5\quad 4.2.5 Determine the equation of g1g^{-1}, the inverse of gg, in the form y=...y=... (2)(2)
4.2.6\quad 4.2.6 If h(x)=g1(x)+kh(x)=g^{-1}(x)+k \: is a tangent to ff, determine the coordinates of the point of contact between hh and ff. (4)(4)
[23]\textbf{[23]}