Funatic Maths

Written on
- Paper 2

Question 5

5.15.1 Simplify the following expression to ONE trigonometric term:
sinxcosx.tanx+sin(180+x)cos(90x)\frac{\displaystyle\sin{x}}{\displaystyle\cos{x}.\tan{x}}+\sin(180^{\circ}+x)\cos(90^{\circ}-x)
(5)(5)
5.25.2 Without using a calculator\textbf{Without using a calculator}, determine the value of:
sin235cos2354sin10cos10\frac{\displaystyle \sin^2 35^{\circ}-\cos^2 35^{\circ}}{\displaystyle 4\sin 10^{\circ}\cos 10^{\circ}}
(4)(4)
5.35.3 Given: cos26=m\cos 26^{\circ}=m
Without using a calculator\textbf{Without using a calculator}, determine 2sin2772\sin^2 77^{\circ} in terms of mm.
(4)(4)
5.45.4 Consider: f(x)=sin(x+25)cos15cos(x+25)sin15f(x)=\sin(x+25^{\circ})\cos 15^{\circ}-\cos(x+25^{\circ})\sin 15^{\circ}
5.4.1\quad 5.4.1 Determine the general solution of f(x)=tan165f(x)=\tan 165^{\circ} (6)(6)
5.4.2\quad 5.4.2 Determine the value(s) of xx in the interval x[0;360]x\in[0^{\circ}\,;\,360^{\circ}] for which f(x)f(x) will have a minimum value. (3)(3)
[22]\textbf{[22]}