Quadratic Formula: x=2a−b±b2−4ac whereax2+bx+c=0 |
Finance: A=P(1+ni) A=P(1−ni) A=P(1−i)n A=P(1+i)n F=ix[(1+i)n−1] P=ix[1−(1+i)−n] |
Sequences and Series: Tn=a+(n−1)d Sn=2n[2a+(n−1)d] Tn=arn−1 SN=r−1a(rn−1);r=1 S∞=1−ra−1<r<1 |
First Principle: f′(x)=h→0limhf(x+h)−f(x) |
Analytical Geometry: d=(x2−x1)2+(y2−y1)2 M(2x1+x2;2y1+y2) y=mx+c y−y1=m(x−x1) m=x2−x1y2−y1 m=tanθ (x−a)2+(y−b)2=r2 |
Trig Triangles, in ΔABC: sinAa=sinBb=sinCc a2=b2+c2−2bc.cosA area ΔABC=21ab.sinC |
Trig Compound Angles: sinα+β=sinαcosβ+cosαsinβ sinα−β=sinαcosβ−cosαsinβ cosα+β=cosαcosβ−sinαsinβ cosα−β=cosαcosβ+sinαsinβ cos2α=cosα2−sinα2or1−2sinα2or2cosα2−1 sin2α=2sinαcosα |
Probability: P(A)=n(S)n(A) P(AorB)=P(A)+P(B)−P(AandB) |
Statistics: xˉ=nΣx σ2=ni=1∑n(xi−xˉ)2 y^=a+bx b=Σ(x−xˉ)2Σ(x−xˉ)(y−yˉ) |