Funatic Maths

Equations-and-inequalities

  • Written on
    - Paper 1

    Question 1

    1.11.1 Solve for xx:
    1.1.1\quad 1.1.1 x26x=0x^2-6x=0 (2)(2)
    1.1.2\quad 1.1.2 x2+10x+8=0x^2+10x+8=0\quad (correct to TWO decimal places) (3)(3)
    1.1.3\quad 1.1.3 (1x)(x+2)<0(1-x)(x+2)<0 (3)(3)
    1.1.4\quad 1.1.4 x+18=x2\sqrt{x+18}=x-2 (5)(5)
    1.21.2 Solve simultaneously for xx and yy:
    x+y=3  x+y=3\; and   2x2+4xyy=15\;2x^2+4xy-y=15
    (6)(6)
    1.31.3 If nn is the largest integer for which n200<5300n^{200}<5^{300}, determine the value of nn. (3)(3)
    [22]\textbf{[22]}
  • Written on
    - Paper 1

    Question 1

    1.11.1 Solve for xx:
    1.1.1\quad 1.1.1 x2+5x6=0x^2+5x-6=0 (3)(3)
    1.1.2\quad 1.1.2 4x2+3x5=04x^2+3x-5=0\quad (correct to TWO decimal places) (3)(3)
    1.1.3\quad 1.1.3 4x21<04x^2-1<0 (3)(3)
    1.1.4\quad 1.1.4 (32+x)(32x)=x(\sqrt{\sqrt{32}+x})(\sqrt{\sqrt{32}-x})=x (4)(4)
    1.21.2 Solve simultaneously for xx and yy:
    y+x=12  y+x=12\; and   xy=143x\;xy=14-3x
    (5)(5)
    1.31.3 Consider the product 1×2×3×4××301 \times 2 \times 3 \times 4 \times \cdots \times 30.
    Determine the largest value of kk such that 3k3^k is a factor of this product.
    (4)(4)
    [22]\textbf{[22]}