Funatic Maths

Derivatives

  • Written on
    - Paper 1

    Question 7

    7.17.1 Determine f(x)f^\prime (x) from first principles if f(x)=2x21f(x)=2x^2-1. (5)(5)
    7.27.2 Determine:
    7.2.1\quad 7.2.1 ddx(x25+x3)\frac{\displaystyle d}{\displaystyle dx}(\sqrt[5]{x^2}+x^3) (3)(3)
    7.2.2\quad 7.2.2 f(x)f^\prime (x) if f(x)=4x294x+6f(x)=\frac{\displaystyle 4x^2-9}{\displaystyle 4x+6}\: ; x32x\neq -\frac{\displaystyle 3}{\displaystyle 2} (4)(4)
    [12]\textbf{[12]}
  • Written on
    - Paper 1

    Question 7

    7.17.1 Determine f(x)f^\prime (x) from first principles if it is given that f(x)=47xf(x)=4-7x. (4)(4)
    7.27.2 Determine dydx\frac{\displaystyle dy}{\displaystyle dx} if y=4x8+x3y=4x^8+\sqrt{x^3} (3)(3)
    7.37.3 Given: y=ax2+ay=ax^2+a
    Determine:
    7.3.1\quad 7.3.1 dydx\frac{\displaystyle dy}{\displaystyle dx} (1)(1)
    7.3.2\quad 7.3.2 dyda\frac{\displaystyle dy}{\displaystyle da} (2)(2)
    7.47.4 The curve with the equation y=x+12xy=x+\frac{\displaystyle 12}{\displaystyle x} passes through the point A(2  ;b)A(2\; ;\, b). Determine the equation of the line perpendicular to the tangent to the curve at AA. (4)(4)
    [14]\textbf{[14]}